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ALL ADMISSIBLE LINEAR ESTIMATORS OF A
MULTIVARIATE POISSON MEAN!

By L. D. BROWN AND R. H. FARRELL

Cornell University

Admissible linear estimators Mx + v must be pointwise limits of Bayes
estimators. Using properties of Bayes estimators preserved by taking limits,
the structure of M and v can be determined. Among M, v with this structure,
a necessary and sufficient condition for admissibility is obtained. This con-
dition is applied to the case of linear (mixture) models. It is shown that only
the most trivial such models admit linear estimators of full rank which are
admissible or are even limits of Bayes estimators.

.

1. Introduction. In this paper p-dimensional discrete random variables X
with
(1.1) P(X =x) = c\)h(x)\®

are studied, A a p-dimensional parameter vector with transpose A\’ € (0, )
X ... X(0,0)andx € Z = {x: x* € [0, ») X ... X [0, ) has integer coordinates}.
Assume h(x) > 0 for all x € 2. Let e; be the unit vector with ith coordinate
equal one, so that the notation A® is defined by A® = [[%, (efr) @,

In another paper, Brown and Farrell (1985), when squared error is used to
measure loss, it is shown that admissible estimators 4 of.the vector A are pointwise
limits of Bayes estimators. From this, together with some development of simple
properties of Bayes estimators, it follows that

1.2) efo(x)efo(x + e) =efd(x)efd(x +¢), 1<i, j<p

for all x € 2 and for all § which are pointwise limits of Bayes estimators.
From the relation (1.2) the structure of estimators

(1.3) 0(x) = Mx + v,

M a p X p matrix, v a p X 1 vector, can be deduced when 6 is a pointwise limit
of Bayes estimators. See Theorem 1.

When the components of X are independently distributed Poisson random
variables (a special case of (1.1)), we obtain a necessary and sufficient condition
that an estimator of the form (1.3) be admissible. See Theorem 2 for a statement.
The result stated in Theorem 2 complements the result of Cohen (1966) in which
all admissible linear estimators of a multivariate normal mean (known covari-
ance) were determined. Linear estimators in the discrete context were discussed
by N. L. Johnson (1957).
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One motivation for the use of linear estimators is that they are the least
squares estimators for linear models. Although many problems involving multi-
variate Poisson means are modeled by log linear models, there are also practical
situations in which linear models are appropriate. One such situation is described
in Example 1, below. The general model described in Example la occurs in
applications to position emission tomography. See Shepp and Vardi (1982) or
Vardi, Shepp, and Kaufman (1983).

Certain linear estimators other than least squares estimators also have a
heuristic appeal, as discussed in Example 2.

EXAMPLE 1a (A simple mixture problem). Consider two radioactive materials
with (unknown) decay rates per unit mass of p; and p, counts per unit time,
respectively. Suppose the experimenter has three ingots of material. It can be
determined that the ith unit i = 1, 2, 3, contains h;; mass units of material
Jj =1, 2. The total number of counts, X;, for each ingot is observed over time
interval ¢;. Thus the observed variables X; are independent Poisson variables
with E(X;) = t;hup1 + t:hizp2. There is no loss of generality in setting ¢; = 1,
which we do in the general formulation below.

EXAMPLE 1b (The general mixture problem). The general version of Example
1 involves X € RP whose coordinates are independent Poisson variables with

(1.4) A=EX)=Hp

where H(p X m) has given nonnegative entries, and the parameter vector,
p(m X 1), also has nonnegative entries. Assume that rank H = m so that all
coordinates of p are identifiable and hence estimable. We limit our later discussion
to squared error for estimating p or for estimating A. One might expect, since the
problem is linear, that there should be reasonable linear estimators which are
admissible, or at least limits of Bayes procedures. The obvious suggestion would
be (generalized) least squares estimators. However, it follows from Theorem 1
that only in very special situations will there exist nontrivial linear estimators
which are admissible or are even limits of Bayes procedures. This is discussed in
more detail following the statement of Theorem 2.

EXAMPLE 2 (Another linear estimator). Even when X is unrestricted (except
for the condition \; = 0), heuristic considerations can motivate the use of linear
estimators other than the simple 6(x) = ax + b (@ = 0, b = 0). Consider for
example 6(x) = Mx with

Rewrite M as M = (%)M, + (%)M, with M; = (} ) and M, = I. Thus, § =
(%2)6, + (¥2)5, where 6, is the least square estimator corresponding to {A: A\; = Az}
and of course §;(x) = x. Both §; and §; are admissible linear estimators. This is
taken by some to motivate their average, 4, as a plausible estimator. Such a
situation is familiar in the normal means problem where 4 is, in fact, admissible.
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However, in the Poisson means problem ¢ is not admissible since it is not a limit
of Bayes procedures. This can be easily deduced from Theorem 1.

In the sequel, ordinary squared error loss, || 6(x) — A ||? is referred to as the
Case 1 loss function. The Case 2 loss function is Y2, (e!A) ' (ef(8(x) — \))?2, used
by Clevenson and Zidek, (1975). As is shown in Brown and Farrell, the analogue
of (1.2) for the Case 2 loss function is

(1.5) efd(x + e)efd(x + e; + ¢) = efd(x + ¢j)eid(x + e + ¢).

The necessary condition of Theorem 1 holds for both Case 1 and Case 2 loss
functions and all distributions of the form (1.1). Theorem 2, the necessary and
sufficient condition, is stated only for the Poisson problem in Case 1 and Case 2.

The proof of Theorem 2 in Case 1 uses known results about squared error due
to Peng (1975). Admissibility proofs easier than Pehg’s are now available in
Brown and Hwang (1982), and Ghosh, Hwang and Tsui (1983).

This work is partly an outgrowth of efforts to build a decision theory founda-
tion for the Ph.D. thesis of Iain Johnstone (1981). The authors are indebted to
Johnstone for many helpful conversations about the linear problem and the use
of condition (1.2).

THEOREM 1. Consider distributions of the form (1.1) with either the Case 1 or
the Case 2 loss functions. Let the estimator 6(x) = Mx + v be a pointwise limit of
Bayes estimators, M a p X p matrix and v a p X 1 vector. Then

(i) v and M have nonnegative entries.
(i) M?= DM where D is the diagonal matrix with d; = ¥}, mj;.
(iii) If M is nonsingular then M = D is a diagonal matrix.

(iv) If M = (my;) is singular there exists a permutation o of 1, -- -, p such that
the matrix M’ = (m,q).(j) has the block form
M, O 0 0 B
0 M, 0 0 B,
(1.6) M = 0 0 M, 0 B,
0 0 0 0 B,u
0 0 0 0 O

In (1.6), s 2'0, r;i>0fori=1, .8, re1 =0, and rye = 0. The matrices M;

are (r; X r;) rank one matrices of the form M; = a;m;(1, - - - , 1) where o;> 0 and
m; is an (r; X 1) vector with positive entries satisfying (1, ---, 1)m; = 1. The
matrices B;,i=1, - - - , s, satisfy B; = m;b} where b; is rs+2 X 1 and has nonnegative

entries. Byy1 is an arbitrary (rs+1 X rs+2) matrix with nonnegative entries. We
assume, without further loss of generality, that the row and column permutation
leading to (1.6) has been chosen so that each of the last rs.2 columns of M’ contains
a positive entry.
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(v) The following three conditions are equivalent:
(a) M is diagonalizable (i.e., RMR™ is diagonal for some nonsingular matrix
R).
(B) rs+1=00r Byy1 = 0.
(7) mii=0=m,«,~=0,15j5p.

(vi) A necessary condition on v is

(1.7) My = Dn.

When the coordinates are permuted as in (1.6) it follows from (1.7) that

(1.8) v = (Bimi, -, Bsms, ¥, OF)

where ;= 0,i=1, ---,s,yis a (rs+1 X 1) vector of nonnegative entries, and 0* is

.

here the (1 X ryy2) zero vector.

REMARK 1. The ith row of M being zero means the ith component of § is
efy, a constant. The jth column being zero means e!X is not used by 4 in
calculation of the estimate. Here is a peculiar consequence of Theorem 1. For
p = 2 the matrix M; = (§ §) corresponds to a limit of Bayes estimators while
M, = ({ }) does not. In fact, it follows from Theorem 2 that the estimator &(x)
= M, x is admissible for the Poisson problem. (Of course it is hard to see when
an estimator like M;x would be useful, which only reemphasizes the commonplace
fact that admissibility alone does not guarantee the estimator is desirable).

THEOREM 2. Let the components of X be independent Poisson variables.
Assume that 1, - - - , p has been permuted so that the estimator 6(x) = Mx + v has
matrix M of the block form (1.6), and that v satisfies (1.8). In addition assume (as
can be done by further permutation) that o1 = o2 = - - - = g5 = 0. A necessary and
sufficient condition that 6 be admissible for Case 1 (Case 2, respectively) is that

(1.9) 1=0, and 1> 03 (1> g, respectively),
and
(110) lf g; = 1 then ﬁ,‘ =0 and Bi = (.

Section 2 consists of a proof of Theorem 1. Section 3 consists of a proof of
Theorem 2. .

REMARK 2. The results of Theorems 1 and 2 for Case 1 are also valid if the
loss function is a positive definite quadratic form in (§ — \), that is (6 — \)®
- Q(6 — \) where @ is symmetric positive definite. This can easily be checked
from the proofs in Sections 2 and 3; and is also clear from the theorems themselves
and general decision theoretic results noted in Bhattacharya (1966).

We now describe the application of Theorems 1 and 2 to the general mixture
problem described in Example 1b, and to linear models in general.
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Consider a linear model of the form
(1.11) A=Hp + po

p € R C R™, where H(p X m) has rank m and int. R # &. This is a mild
generalization of (1.4). Consider the Case 1 loss function for estimating A. To
avoid special cases we discuss only linear estimators 6(x) = Mx + v in which the
column space of M(C(M)) satisfies C(M) = C(H). (If C(M) ¢ C(H) then the
estimator can be improved for A satisfying (1.11) by projecting it on C(H) + po.
When C(M) C.. C(H) the admissibility properties of  follow from its properties
for estimating A subject to a submodal of (1.11) of the form A\ = H* p* + p, where
C(M) = C(H*)). We further limit consideration to the case where M is diagon-
alizable, for this class includes all the intuitively appealing linear estimators
including the generalized least squares estimators.

It is then clear from Theorem 1 that § can be a limit of Bayes estimators (and,
hence, potentially admissible) only if C(H) = C(M) is spanned by vectors v,
- -+, Un, having nonnegative coordinates and satisfying

(1.12) viv; =0, i#],
po € C(H), and
(1.13) R={p:\=0}

which is a natural choice for R.

Under the above conditions, there is in fact a generalized least squares
estimator which is a limit of Bayes estimators. Define V to be the diagonal matrix
with entries v; = Y72, efv;. (Note that at most one of efv;, j =1, ---, m is
nonzero). Then the generalized least squares estimator appropriate for the
covariance matrix V will be a limit of Bayes estimators. (This estimator can
alternately be described as the projection on C(H) in the (pseudo) inner product
(¥, z) = y'V~z. Note that the choice of the set {v;, - - -, v,} above is uniquely
determined only up to multiplicative constants. Hence V is not uniquely deter-
mined. However, because of the orthogonality restriction (1.12) all allowable
choices of {v;, - -, U} lead to the same generalized least squares estimator.)

This estimator will be admissible if and only if m < 2.

The general mixture problem of Example 1b is of the form (1.11) with po = 0,
and R = {p: p = 0}. The necessary (and sufficient) conditions (1.12) and (1.13)
will be satisfied only in the very special case where each column of H is
proportional to-one of the orthogonal basis vectors {vy, - - - , U,}. (If the condition
(1.12) is satisfied but the columns of H are not themselves orthogonal then (1.13)
will be violated in the mixture problem.) A mixture problem of this type is trivial.
Thus to find limiting Bayes and admissible estimators for nontrivial mixture
problems, one must look outside the class of linear estimators.

The same conclusions can be shown to also hold if the loss function is squared
error for estimating the rate vector p in the mixture problem. For the proof
combine Remark 2 with appropriate simple projection arguments.

La Motte (1982) describes in general terms the class of linear estimators which
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are admissible within the class of linear estimators. For estimation of a Poisson
mean vector, many of these estimators are not admissible nor can they be limits
of sequences of Bayes estimators since (1.2) is not satisfied. For example, in
p = 2 dimensions with v = 0, the estimators with matrices

(% % _(» %
M= (o 1/2) and M = (1/7 %)

are uniquely determined Bayes estimators within the class of linear estimators,
but are, by Theorem 1, inadmissible in the class of all estimators. To see this,
put mass % at (}) and (}) in the first case and (3) and (3) in the second case. For
p = 3 dimensions, the linear estimator with M = I, is admissible within the class
of linear estimators but as shown by Peng (1975) is an inadmissible estimator.

2. Proof of Theorem 1. Letg,=0and g, = Z,’-“;l r,k=1,2, ... ,5s+ 2.

(i) Since 6(x) = Mx + v is a pointwise limit of Bayes estimators and since
the components of Bayes estimators are nonnegative, it follows that ef(Mx + v)
= 0 for all i. Take x = 0 and find that the entries of vy are nonnegative. Take
x = ne; and let n — «, n an integer, to obtain m;; = lim,_..n"e;(Mne; + v) = 0.

(ii) In the two cases the product rules (1.2) and (1.5) say, after substitution

and cancellation, that, with m;; = e{ Me;,
@.1) Case 1, ei{(Mx + v)mj; = m;je!(Mx + v)
' Case 2, el(Mx + v)mj; + muym;; = e}(Mx +v) + m;m;.

Substitute nx for x, n an integer, and let n go to infinity, to obtain in both cases
that

(2.2) mj;(efMx) = mjjej Mx.
Take x = e;. Then (2.2) says that m;m; = m;;m;,. Sum on i to obtain
(2.3) M? = DM
where D is a diagonal matrix with jj entry the sum Y2, m;; the jth column sum.

(iii) In particular if M is nonsingular, cancellation in (2.3) shows M = D, a
diagonal matrix, which in the nonsingular case has nonzero diagonal entries, i.e.,
column sums.

(iv) From tile substitutions x = e, and x = ¢; in (2.2), obtain
(2.4) mymy, = mgmy,  and  mgmy; = mimy;.
Then if m;; # 0 it follows that m; = m,; and substitution into the first part of
(2.4) yields
(2.5) if mi;# 0 then mymy = mymy, all k.

This relationship says that if mj; # 0 then either m; = 0 and the entire ith row
of M is zero or m; > 0 and the ith and jth rows are proportional.
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Permute the rows and columns of M by the same permutation, P, so that the
matrix M’ = PMP* has diagonal elements m{; > 0 for 1 < i < r and m/, = 0 for
r+ 1 =<i=<p. In this form we write

’r Al BlZ
26 = (B

where A, is r X r. It will soon be clear that r = g,. Similarly write

¢e_ (D1 O
2.7 PDP! = < 0 D,
Apply (2.4) to M’. Sum over k to get
(2.8) mjc; = mljc; with ¢; = Y, mh.

Suppose l si<r,r+1=<j<pandmj> 0. Then ¢; > 0 since m/, > 0, yields
mj; > 0. (2.5) applied to M’ then yields m}; = 0 (a contradiction) since mj; = 0.
Thus

(2~9) le = 0.
We may further suppose P so chosen that rows 1, . - - , r; of A; are proportional
rows r; + 1, -- -, ry + rp are proportional, etc. Since mj;; > 0 implies rows i and j

are proportional, m; > 0 implies that the indices i, j are in the same equivalence
set, equivalence defined by nonzero proportionality of rows. Thus A; is in block
form. We write

M, 0 ... 0
(2.10) A1 = 0 M2 0
0 0 .- M,
in which M; is a r; X r; matrix. Since the diagonal entries of M; are nonzero,

proportionality implies all entries of M; are nonzero. Then it follows from (2.4)
that all entries of a row of M, are equal, thus

(2.11) M;=om(1, ---, 1)
where m; is a r; X 1 vector with positive entries. Without loss of generality assume
aQ.---,)m;=1.
Thus P can further be chosen so that
M 0 0 0 B

0 M2 0 0 Bz
(2.12) M=}10 0 ... M, 0 B,

0 0 0 0 B

0 o 0 0 0

where the last r,+2 rows of M’ are O because of (2.5) since each of the last ;.o

columns of M’ contains a nonzero element and m/; = 0 for ¢,.»; + 1 <j <p.
Expression (2.12) has the desired form, (1.6), except that it remains to establish

the form of the matrices B;. Use (2.7) applied to the problem after the permutation
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of coordinates described by P. Note that for 1 < i < s the column sum of M; is
g, =0;(1, ---,1)m; > 0. It follows that M,2 = D;M; and

(2.13) MB,=DB;, 1<i=< S,

where D; = ¢;I,, with I, the r; X r; identity matrix. Hence o;m;(1, ---, 1)B; =
o;B;, which shows that

(214) B,‘ = mibf, l=si<s

for some r,,, X 1 vector b;.

(v) Let x = (xfy) - -+ xlyxlssnxis+2))’ denote a (p X 1) vector partitioned to
correspond to the matrix M’. M’ is of rank s. It has nonzero eigenvalues ¢;, 1 <
I < 5, and corresponding right eigenvectors formed by setting x; = m; and x;, =
0, j # i. Suppose B,+1 = 0 (or re+1 = 0), which is condition (8) in Theorem 1.
Then 0 = M’x when

(2.15) M,'x(,’) + B,~x<s+2) = 0, = 1, e, S

This is a system of s independent equations in p unknowns (the entries of x).
Therefore it has p — s independent solutions. Consequently M’ has p — s
independent eigenvectors for 0 in addition to the s eigenvectors for g;, 1 < i <s.
This proves M’ is diagonalizable. Conversely, suppose By+; # 0. Then 0 = M’x
only if (2.15) is satisfied and also

(2~16) Bs+lx(s+l) = 0.

Altogether this is a system of at least s + 1 independent equations and hence can
have at most p — s — 1 independent solutions. It follows that M’ does not possess
a complete set of eigenvectors and hence cannot be diagonalizable. We have thus
proved that («) is equivalent to (83). It is easy to see that (8) is equivalent to (v).

(vi) Substitute x = 0 in (2.1) and, in Case 2, use m;m; = m;;m;; from (2.5) to
get
(2.17) (efy)m;; = (eby)my;.

To prove (1.7) sum on the index j and reexpress the sum in matrix form. Now
permute the coordinates and consider the problem with M = M’. With v
partitioned in the same manner as M’, (1.7) yields

(2.18) : o;m;(1%y;) = aivi,
and
(2.19) 0=BYei2, I1=1,---,5s+1.

It follows from (2.18) that v; = 8;m;, 8; = 0, and from (2.19) that v,., = 0 since
for every column thereisa B;, 1 < < s + 1, with a nonzero entry in that column.
These facts combined yield (1.8).

3. Proof of Theorem 2. The proofs for the Case 1 and Case 2 loss functions
are parallel, with a number of small differences. We give the proof in full for
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Case 1, and then sketch the modifications needed for Case 2. The next two
paragraphs outline the argument for Case 1 and are followed by the detailed
proof for that case.

The proof of admissibility and inadmissibility as stated requires examination
of a number of cases. The argument to be presented below first establishes
admissibility. In the case where r,y; = ry+2 = 0 this is done by reducing the
problem to looking at parameter vectors

(3'1) Ag = (almtla D) 08m£)~
For parameters Ay the s-dimensional statistic Z;, - - . , Z; where
(32) Zi = Z;!;qi_l‘*'l (ejt'x)’ qo = 0,

is a sufficient statistic. In each case proof of admissibility reduces to multivariate
statements about (6:Z; + 81, - -+, 0:Zs + ;). It should be remembered in one
dimension, if 0 = ¢ < 1 and 8 > 0 then ¢Z + 8 is the unique Bayes estimator
resulting from a Gamma type prior. The case r;+; > 0 and r,+» = 0 corresponds
to the multivariate situation of two estimators, one Bayes, one admissible, being
joined together. These combinations are known to be admissible. The case 742
> 0 is reduced by a backward induction to the previous cases.

The admissibility arguments then follow. It is assumed that ¢; = g3 = --- =
o;. Except for the case o; = g, = 63 = 1 where appeal is made to results of Peng
(1975), explicit construction of counterexamples is given.

Here is the proof of admissibility; Assume first that r,.; = rsee = 0. Let 6 be
as in the theorem and suppose R(A, ) < R(A, ) for all \. Let II be the projection
onto the subspace of vectors S* = {(a,m!, ---, a;m!): a; € R}. Then if A € S
6 = X[ = JJII(6 — A) || = || 6 — N || with strict inequality if II5 # 6. Note that
ME S. We have

(3.3) R(\,, I8) < R(\,, 8) < R(\,, 8)

with strict inequality for some 0 if 16 # 5. Write (II8)! = (dy(x)m}, ---,
d,(x)m!). By sufficiency the d; may be assumed in the sequel to be functions of
Zy, -+ ,2Zs. Then

(3.4) R(N, II3) = Tiy | mil|*E(di(X) — 6:)*
and .
(3.5) R(N\g, 8) = Y1 | mill*E(di(X) — 6,)?
where d,(X) = O'iZ,' + ﬁi.

The random variables Z,, - - - , Z, are independent Poisson 6, - - - , 6, random
variables. For this problem with risk (3.4) the estimator in (3.5) is an admissible
estimator of 6, - - -, 0, if (and only if) 65 > 1 and 8; = 0 if o; = 1. This was shown

in part by Peng (1975) and follows easily using the methods of Brown and Hwang
(1982). Furthermore they show (3.3) implies I16 = 4, so that § = § and therefore
0 is admissible.

Now consider the case r,,; > 0 and r,,2 = 0. In this case the constant estimator,
vs+1 for the ryyi-dimensional problem is Bayes and admissible while Mx + v



LINEAR ESTIMATORS OF POISSON MEANS 291

restricted to the ¢, = Y i{-; ri-dimensional problem was shown above to be
admissible. Therefore Mx + v is admissible for the g;+; = gs + rs+1 dimensional
problem. (This is true even when v,,; = 0, in spite of the fact that this estimator
is Bayes but not unique Bayes in the r;.;-dimensional problem.)

Since the loss function is strictly convex if the estimator § differs from 6 =
Mx + v at even a single lattice point and is as good as & then (3 + §)/2 has
stnctly better risk at all parameter values satisfying \;>0,i=1, ..., p. Thus if
$ is as good as & (and r,42 = 0) then § = 3, since 6 is admissible.

We now proceed by induction on r,,; to show that 8 as good as & implies § =
8. Suppose r;+2 = R and this hypothesis is true for rso < R — 1.

Assume § is as good as 6 = MX + v. The last components of these vectors are
ebé and e;3 = 0. Let A be the least integer such that there exists x with e;x = A
and §(x) # 6(x). After cancellation of terms from both risk functions and division
by (ej\)* = £4 let £ — 0. The result is

Tesetuma [18(x) = N [|Zc (V)R (x)AE4%
= Yooete=a |l §(x) — M Ze (V)R (x) A4,

By construction e;d(x) = 0 and e;\ = 0. Let M* denote the (p — 1) X (p — 1)
matrix constructed by deleting the last row and column of M. Define \* € RP™*
by ei\* = ef\ + mjpA, 1 < j < p — 1. Note that the value of r,., corresponding to
M* is rg.o = R — 1. The expression on the left of (3.6) is the risk of the p — 1
dimensional estimator (x) = M*x + A*with x; =x;,i=1, ..., p — 1. The right
side of (3.6) is

(3.6)

DIEWRING) i (e (5(x) = N))Ze(W)h(x)\GE4
+ Teoepema (€55(2))°cIR(DNEA,

By the induction hypothes1s 0 is uniquely admissible for the p — 1 dimensional
problem. This implies epa(x) = 0 for all x such that e,x = A and that e!5(x) =

eid(x), 1 =j<p—1,e,x = A. This contradicts the choice of A, and completes
the induction argument. We have thus proved the admissibility assertions of the
theorem.

We now consider the asserted cases of inadmissibility. Suppose ¢; = 1 and
either B; # 0 or §8; > 0. For simplicity suppose i = 1. To avoid extra subscripts
below let m = m,, o0 = 01, Z = Zl, 0= 01 = E(Zl), 6 = ,31 + ﬂ1X(s+2) which is
random if B; # 0, and A\* be the r; X 1 vector of the first r; parameter values.
The first r; coordinates of the estimator will be modified keeping the remainder
unchanged. In making risk comparison only the first r; terms of the sum in the
risk function need be examined. We omit the other terms in the following. The
relevant parts of the estimator are

(3.8) eid(x) =el((6Z + B)m —ew), 1<j=<r, ¢>0,

with w a r; X 1 vector to be specified. Consider a family of norms of vectors w
defined by

(3.7

lwli= T (efA*)*(efw)?,
so that in Case 1, « = 0, and in Case 2, « = 1. Think of the weighted sum of
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squares of the first r; coordinates of § as a norm, and obtain for the relevant part
of the risk of (3.8)

E|(6Z + B)m — ew — 2*|2
=2 ||m|2+ E|((c—1)0+ B)m + (6m - \*) — ew]|2.

In Case 1 with the choice w = 1 use the observation that (w, m), = 1 and
(w, dm — X\*)o = 0. In Case 2 with the choice w = m, (\*, w); = 1. Thus the Case
1 risk (3.9) becomes

(3.10) o*|mli+ E|(s60 + B) — A*[I§ — 2¢ E((c — 1)0 + 8) + | w3
The Case 2 risk (3.9) becomes
(3.11) o |m|3+E|(c0+8) — A2 = (2 E(c0 +8) — )| m|}+ 2.

In Case 1, since o = 1 and EB > 0, the sum of the last terms is negative for ¢ > 0
and small. In Case 2,

(3.12) 1 =35 (gfm) < [ m[:(Tf- M) = [ m .6

so that 67 < || m||%. Thus in Case 2, for ¢ > 0 near zero, the last two terms of
(3.11) are bounded by

(3.13) (2¢ E(c0 + 8) — &?) [ m |2 — 2 = (2c(c — 1)0 + EB — 28~ > 0.

In both cases a strict improvement is obtained.

In the case ¢ > 1 and B; = 0, 8 = 0, the first r, coordinates of (em — ew)Z
contribute to the risk
(3.14) | om — ew |20 + || (om — ew)d — X ||2.

In Case 1, using || 1|2 = r, and (m, 1), = 1, with w = 1, the difference of the
risk functions for the casese =0and e >0 is

(3.9

(3.15) (2e0 — r1e2)0 + (2e(c — 1) — £2r1)02> 0
for e < 2(¢ — 1)/r;. In Case 2 with w = m and ¢ = 0, the risk function is
(3.16) (6% + o0”) [ m || — 2060 + 6.

This risk is minimized as a function of ¢ by the choice
c=1/1+0)Imli=<06/(1+06) =1

Thus in Case 2, if ¢ > 1, then strict improvement results.

Finally, suppose o, = 02 = 03 = 1, Bl = Bz = Ba = 0, and 61 = 62 = 63 =0. The
estimator 6* to be constructed differs from 6 only on its first g3 =r; + r2 + 13
coordinates and the difference of the risks depends only on these coordinates of
X. Recall that Z,, Z, and Z; are independent Poisson random variables with
means 0,, 05, 03. Peng (1975) has shown the existence of an estimator which
dominates (Z1, Z,, Z3) as an estimator of (6;, 62, 63). See also Ghosh, Hwang and
Tsui (1983). Write the coordinates of this improved estimator as

(3.17) (1 - (2))Z..
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Thus
0 =< E(X1 [(Zi — 6)° — (1 — as(Z2))Z; — 6:)%])

(3.18) = Ey(Z1 ai(2)Z:(2(Z; - 6) — ai(Z)Z))
= E(ZL1 (Z}(20:(2) — a}(2)) — 2Z:i6:0i(Z)))

with strict inequality for some 4.
Define a modified estimator 6* by efé* = ((efm;) — eai(Z))Z;, g1 + 1 < j <
gi, 1 =1, 2, 3, and otherwise e{6* = e}s. Then

R(A\, 8) — R(), 6%)
(3.19) = ¢ Ey(3%1 ai(Z)Z:(2(Z; — 6;) — rieai(Z)Z)))
=e Eo(z =1 [Z2(2a,(Z) riea; (Z)) — 26; Ztal(Z)])

It follows from (3.15) that (3.16) is nonnegative and positive for some 6§ provided
rie <1,1 <j =< 3. That completes the proof for Case 1.

As previously remarked, the proof of Case 2 is parallel to the preceding proof.
It begins with the case r,.; = r..2 = 0 by letting II be the projection onto S in
the inner product (u, v) = u‘C™'v where C is the (p X p) diagonal matrix
with dlagonal elements (m¢, ---, mt). Note that if A = Ay € S and (II§)* =
(dlml, ..., d,mt) then

RN, 6) = R(Ag, 8) = 321 A8 — N)? = X2 AH((II6); — A)2
(3.20) = Yo (1/8:) iy (1/myj)(dim; — 6:my)?
= i (1/8.)(d; — 6:)% = R(\,, T13).

This expression is parallel to (3.3), (3.4). When ¢, <1 and 8; = 0 if 6; = 1 the
estimator with d;(Z) = 6;Z + 8,1 =1, --., s, is an admissible estimator of 6,,
, 0; under the loss in (3.20). It follows, as in Case 1, that 6 is admissible under

these conditions.

The argument for r,.; > 0, 2 = 0 is as before.

Suppose 7,12 = 1. Proceed by induction as before. Suppose there is a least
integer A such that 6(x) # 6(x) for some x with e,x = A. Proceed as in (3.6) to
get

Sesete=a [281 A7 (0:(x) — X)) Zle(M)h (x)N =4
2 Sooetema [Z21 A1 Gi®) = M) Te)RE)NEAD,

Now let A, — 0, keeping the other coordinates of A as fixed, positive numbers.
The left side of (3.21) stays bounded as the right side approaches o; a contradic-
tion, unless 6,(x) = 8,(x) = 0 for all x 3 epx = A. Thus §,(x) = 8,(x) = 0 for all
x. It now follows from the uniqueness assertion in the induction hypothesis that
5(x) = 6(x) for all x.

The first two parts of the 1nadm1ss1b1hty proof are exactly as in Case 1.

In the third part of the inadmissibility proof ¢, = o2 = 1, B; = B; = 0 and
81 = B2 = 0. Now, when Z,, Z, are independent Poisson random variables with

(3.21)
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means 6,, 6,, Clevenson and Zidek (1975) have shown the existence of an
estimator ((1 — oy(Z))Z,, (1 — a2(Z))Z,) which dominates 6(Z) = Z under Case
2 loss. Let

8/ = (1 —aZ)eimiZ;, g +1=<j=gq, i=12

Otherwise 6} = §;. (Note that efm; occurs in a different place here than in the
estimator used in (3.19) for Case 1, and ¢ = 1.) Then,

R(\, 8) — R(\, 6%)
(3.22) = Eo(3i1 07123 (20:(2) — a}(Z)) — 26:Z:0:(2)])
=0

with strict inequality for some 6, since the middle expression in (3.22) is the
difference in risks for the problem of Clevenson and Zidek. This completes the
proof.
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